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11. CLASS EQUATIONS 
 

§11.1. Babylonian Equations 
If we want to investigate all the character tables of 

a given size we need to find all groups with a given 

number of conjugacy classes. We shall see that there are 

only finitely many possible orders for a group with k 

conjugacy classes, and hence only finitely many k  k 

character tables for any k.  For small values of  k  it is 

possible to catalogue them. 

 

The class equation of a finite group is: 

|G| = n1 + n2 + … nk 

where the ni’s are the sizes of the conjugacy classes and 

n1  n2  …  nk. 

When there are c classes of a given size n, we often write 

n*c instead of n + n + … + n (c times) 

 

Example 1: 

The class equation for S4 is 24 = 1 + 3 + 6*2 + 8 and for 

D16 it is 16 = 1*2 + 2*3 + 4*2. 

 

 Often the class equation completely characterises 

the group, but there are some groups that share the same 

class equation. 
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Example 2: 

Both D8 = A, B | A4 = B2 = 1, BA = A−1B and 

Q8 = A, B | A4 = 1, B2 = A2, BA = A−1B have the same 

class equation:  8 = 1*2 + 2*3. 

 

Now each ni is the index of the corresponding centraliser 

in G and so divides |G|.  If we divide a class equation by 

|G| we get an equation of the form: 

1 = 
1

m1
 + … + 

1

mk
  

where each mi is a positive integer. 

 

A Babylonian equation is an equation of the form: 

1 = 
1

m1
 + … + 

1

mk
  

where each mi  ℤ+ and m1  m2  ..  mk.  The length of 

such an equation is k. 
 

Example 3: 

The class equation for S4 is 24 = 1 + 3 + 6 + 6 + 8 which 

gives the Babylonian equation: 1 = 
1

3
 + 

1

4
 + 

1

4
 + 

1

8
 + 

1

24
 . 

 

Theorem 1: There are only finitely many Babylonian 

equations of a given length. 

Proof: For a Babylonian equation of length k: 

1 = 
1

m1
 + … + 

1

mk
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suppose we have proved that there are finitely many 

choices for m1, m2, … mi. 

Let i < k and let M = 1 − 
1

m1
  − 

1

m2
  − … − 

1

mi
 . 

Then 
1

mi+1
 + … + 

1

mk
 = M and we have finitely many 

choices for M. 

Since 
1

mi+1
    …  

1

mk
 we have M  

k − i

mi+1
 . 

So 
1

 1 − M
  < mi+1   

k − i

M
 , giving only finitely many 

choices for mi+1. 

Corollary: There are only finitely many class equations 

of a given length and hence only finitely many character 

tables of a given size. 

 

Example 3: Babylonian equations of length  4: 

 

 

 

 
 

Length 3 

1 = 
1

2
  + 

1

3
  + 

1

6
  1 = 

1

2
  + 

1

4
  + 

1

4
  1 = 

1

3
  + 

1

3
  + 

1

3
  

 

  

Length 1 

1 = 1 

Length 2 

1 = 
1

2
  + 

1

2
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Length 4 

1 = 
1

 2
 + 

1

 3
  + 

1

 7
  + 

1

 42
  1 = 

1

 2
 + 

1

 3
  + 

1

 8
  + 

1

 24
  

1 = 
1

 2
 + 

1

 3
  + 

1

 10
  + 

1

 15
  1 = 

1

 2
 + 

1

 3
  + 

1

 9
  + 

1

 18
  

1 = 
1

 2
 + 

1

 3
  + 

1

 12
  + 

1

 12
  1 = 

1

 2
 + 

1

 4
  + 

1

 5
  + 

1

 20
  

1 = 
1

 2
 + 

1

 4
  + 

1

 6
  + 

1

 12
  1 = 

1

 2
 + 

1

 4
  + 

1

 8
  + 

1

 8
  

1 = 
1

 2
 + 

1

 5
  + 

1

 5
  + 

1

 10
  1 = 

1

 2
 + 

1

 6
  + 

1

 6
  + 

1

 6
  

1 = 
1

 3
 + 

1

 3
  + 

1

 4
  + 

1

 12
  1 = 

1

 3
 + 

1

 3
  + 

1

 6
  + 

1

 6
  

1 = 
1

 3
 + 

1

 4
  + 

1

 4
  + 

1

 6
  1 = 

1

 4
 + 

1

 4
  + 

1

 4
  + 

1

 4
  

 

Example 4: Class equations of length  3 

Babylonian Class Eqn Groups 

1 = 1 1 = 1 1 

1 = 
1

2
  + 

1

2
  2 = 1 + 1 C2 

1 = 
1

2
  + 

1

3
  + 

1

6
  

6 = 1 + 2 + 3 S3 = D6 

1 = 
1

2
  + 

1

4
  + 

1

4
  

4 = 1 + 1 + 2 none 

1 = 
1

3
  + 

1

3
  + 

1

3
  3 = 1 + 1 + 1 C3 
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§11.2. Some Elementary Tests for 

Potential Class Equations 
 Much of the material in this chapter arose in the 

1980s from my teaching a course on group theory. 

It’s a routine exercise to generate all Babylonian 

equations of a given length and to obtain a list of possible 

class equations. The problem is to exclude those that do 

not arise. A subsequent problem is to identify the groups 

that give rise to the potential class equations. 

We’ll focus on the first problem by investigating 

properties that class equations must satisfy.  Each such 

property will give rise to a test. Then when we have a 

potential class equation we put it through the battery of 

tests. Only if it survives do we go in search for possible 

groups. If, after a reasonable amount of effort, we can find 

no such group we might then look for another reason to 

exclude that class equation. The set of tests we shall 

develop will catch the vast majority of false class 

equations – quite probably no such set of tests will ever 

catch them all, for as the number of conjugacy classes 

increases there appear to be more and more subtle reasons 

that exclude a given class equation. 

 

Theorem 2 (Z Test): Suppose |G| = N and |Z(G)| = m. 

If the class equation for G is 

N = 1*m + nm+1 + nm+2 + … + nm 

where each nm+1 > 1 then m must properly divide N/ni for 

each i. 
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Proof: Suppose g   Z(G). 

Then |CG(g)| = N/ni for some i > m. 

Since g  CG(g), Z(G) must be a proper 

subgroup of CG(g) and so m properly divides N/ni. 

 

Example 5: 84 = 1 + 1 + 12 + 21 + 21 + 28 is not a class 

equation. 

 

Theorem 3 (pq Test): Suppose 

N = 1 + n2 + n3 + … + nk 

is the class equations for a group G and, for some  i > 1, 

N/ni = paqb, where p, q are distinct 

 primes and a, b  1. 

Then the number of j for which pq divides N/nj is at least 

4. 

Proof: We need to find four conjugacy classes where the 

orders of the centralisers are all divisible by pq. 

Suppose |CG(g)| = paqb where g ≠ 1 and suppose that g  

has order  d. 

Then either p or q  divides d. 

Suppose, without loss of generality, p divides d, in which 

case some power of g has order p. 

By Cauchy’s theorem CG(g) contains an element of order 

q, which commutes with that power of order p and so G 

has an element of order pq and so elements of order 1, p, 

q and pq whose centralisers have orders divisible by pq. 

As the orders are different they must belong to distinct 

conjugacy classes. 
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Example 6: 120 = 1 + 5 + 20 + 24 + 30 + 40 is not a class 

equation because if it was the respective centralisers 

would have orders 120, 24, 6, 5, 4 and 3. 

 
Theorem 4 (pN Test): Suppose p is prime and 

pN = 1 + n2 + n3 + … + nk−t + N*t 

is the class equation for a group G where N > 1, t  1 and 

nk−t < N. 

Then:  (i) t | p − 1 and 

          (ii) N  
p−1

t
 (mod p). 

Proof:  Let  be a class of size N and let g  . Then 

|CG(g)| = p and so CG(g) = g. 

If gs ≠ 1 then CG(gs) = g and so gs lies in a conjugacy 

class of size N. 

Let  be any conjugacy class of size N and let g act on 

it by conjugation. 

The orbits have sizes 1 or p. But orbits of size 1 

correspond to non-trivial powers of g, and there are p − 1 

of these altogether, so the number of orbits of size 1 in  

is at most p −1. 

Now if N = np + r where 0  r < p there must be exactly r 

orbits of size 1 in . 

So there are exactly r powers of g in each of the t 

conjugacy classes of size N and hence 

p − 1 = rt.  Hence N  r = 
p − 1

t
 (mod p). 
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Example 7: 216 = 1 + 8 + 27 + 54 + 54 + 72 is not a class 

equation. 

Here p = 3, t = 1 and N = 72  0(mod 3).  

 

§11.3. The 2N Test 
 The largest possible size of a conjugacy class, for a 

non-trivial group of order M, is M/2. Of course there can 

only be one of these and its elements must have order 2. 

In fact the class equation of such a group is completely 

determined by this property.  

 

Theorem 5 (2N test):  Let |G| = 2N and let  be a 

conjugacy class of size N. 

Then N is odd and the class equation for G is 

2N = 1 + 2 + 2 + … + 2 + N = 1 + 2*
N − 1

2  . 

Proof: 

(1) The elements of  have order 2 and commute only 

with 1 and themselves: 

This is because the centralisers of these elements have 

order 2N/N. 

 

(2) H = G –  is a normal subgroup of G: 

H clearly contains 1 and is closed under inverses.  Let x, 

y be distinct elements of . 

If xy   then (xy)2 = x2y2 = 1, so xy = yx and hence y  

CG(x), a contradiction. Hence H is a subgroup of G and, 

being a subgroup of index 2, it is a normal subgroup. 
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 H  

H H K 

  H 

 

(3) H is abelian: 

Let h  H and k  .  If hk  H then k  H. 

Hence hk   and so (hk)2 = 1. 

Thus k−1hk = h−1 for all h  H and so h → h−1 is an 

automorphism of H. 

If h1, h2  H then (h1h2)
−1 = h1

−1h2
−1 = (h2h1)

−1 and so h1h2 

= h2h1. 

 

(4) N = |H| is odd. 

If |H| is even then H would contain an element h of order 

2. Since h = h−1  it follows that h commutes with k, a 

contradiction. 

 

(5) The class equation for G is 

2N = 1 + 2 + 2 + … + 2 + N. 

Since k−1hk = h−1 for all k  K and all non-trivial h  H, 

the conjugacy classes, apart from {1} and , are all of the 

form {h, h−1}. 

 

(6) N is odd. 

 

Example 8: 18 = 1 + 2 + 6 + 9 is not a class equation. 
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§11.4. The 3N Test 
Lemma: If z = a + b where a, b  ℤ then 

|z|2  ℤ. 

Proof: Multiplying z by its conjugate we get 

|z|2 = (a + b)(a + b2) 

      = a2 + b2 + ab + ab2 

      = a2 + b2 − ab  ℤ. 
 
Theorem 6 (3N Test): Suppose |G| = 3N and G has 

precisely 2 classes of size N. 

Then |G| = N and the class equation for G is 

3N = 1 + 3t1 + 3t2 + … + 3tk + N*2 where 

N = 1 + t1*3 + t2*3 + … + tk*3 

is the class equation for G. 

Proof: The elements of  have order 3 and commute only 

with their powers. 

Suppose  is a class of size N. 

If  = −1 then there exists g   and x  G such that 

x−1gx = g−1. 

Then x2  CG(g). 

But |CG(g)| = 3 so x  CG(g). 

Hence g2 = 1, a contradiction. 

Hence the two conjugacy classes of size N are  and −1. 

By column orthogonality there must be a non-real entry 

in the  column of the character table for G and, since the 

eigenvalues of the corresponding matrix must be cube 
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roots of 1, this entry must have the form a + b where a, 

b are integers and b  0. 

The character table for G contains the sub-table: 

class 1  −1 

size 1 N N 

1 1 1 1 

2 n a + b a + b2 

3 n a + b2 a + b 

order 1 3 3 

where a, b  ℤ with b  0. 

 

By the lemma, |a + b|2 = |a + b2|2 are positive integers 

and since the sum of squares of the entries in each of the 

last two columns is 3N/N = 3, we must have 

|a + b|2 = |a + b2|2 = 1 

and all other entries in these columns must be zero. 

 

So, by orthogonality with the first column, 

0 = 1 + n(a + b) + n(a + b2) 

   = 1 + n(2a −b). 

Hence n = 1. 

Thus G has at least 3 linear characters. 

 

But if  is any linear character then  ()  0 and so 

G has exactly 3 linear characters and so |G| = N. 

Clearly G = G −  − −1. 
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The elements of  + −1 have centralisers of order 3 so 

can’t commute with any non-trivial element of G. 

 

Hence if 1  g  G, CG(g) = CG(g). 

Thus if g  G has t > 1 conjugates in G then it has 3t 

conjugates in G. 

 

Example 8: If  G has class equation 

48 = 1 + 3 + 12 + 16 + 16 

then G has class equation 

16 = 1 + 1 + 1 + 1 + 4 + 4 + 4, 

which fails the Z Test. 
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EXERCISES FOR CHAPTER 11 
 

Exercise 1: For each of the following statements 

determine whether it is true or false. 

(1) There is a group with class equation: 

72 = 1 + 2 + 3 + 3 + 6 + 8 + 9 + 16 + 24. 

(2) There is a group with class equation: 

32 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 8 + 8 + 8. 

(3) There is a group with class equation: 

32 = 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 16. 

(4) There is a group with class equation: 

120 = 1 + 1 + 15 + 15 + 20 + 20 + 24 + 24. 

(5) There is a group with class equation: 

70 = 1 + 2 + 2 + 7 + 7 + 7 + 7 + 35 

(6) There is a group with class equation: 

60 = 1 + 2 + 5 + 12 + 20 + 20. 

(7) There is a group with class equation: 

50 = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +2 + 2 + 2 + 2 + 2 + 25 

(8) There is a group with class equation: 

48 = 1 + 3 + 4 + 8 + 16 + 16. 

 

Exercise 2: For the Babylonian equations of length 4 

given above, write down the corresponding class 

equations. Eliminate as many as possible and identify 

possible groups for as many of the remaining ones that 

you can. 

 

Exercise 3: Find all the Babylonian equations of length 5 

where each term is less than ½. 
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SOLUTIONS FOR CHAPTER 11 
 

Exercise 1: 

(1) FALSE: 16 does not divide 72. 

(2) FALSE: For such a group G, |Z(G)| = 8. 

The centralisers of the other groups have order 4, but they 

must contain the centre, a contradiction. 

(3) TRUE: It is D32. 

(4) TRUE: For such a group G, |Z(G)| = 2. 

Let Z(G) = A. Suppose that G = H  C2. If so, the class 

equation for H would be 60 = 1 + 15 + 20 + 24, which we 

recognise as the class equation of A5. So G = A5  C2 has 

this class equation. 

(5) FALSE: By the 2N test. 

(6) FALSE: By the 3N test. 

(7) TRUE: Such a group is D50 

(8) FALSE: By the 3N test. 

 

Exercise 2: 

CLASS EQUATION COMMENTS 

42 = 1 + 6 + 14 + 21 2N test 

24 = 1 + 3 + 8 + 12 2N test 

15 = 1 + 1.5 + 5 + 7.5 Sizes of CC must be integers 

18 = 1 + 2 + 6 + 9 2N test 

12 = 1 + 1 + 4 + 6 2N test 

20 = 1 + 4 + 5 + 10 2N test 

12 = 1 + 2 + 3 + 6 2N test 

8 = 1 + 1 + 2 + 4 2N test 
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10 = 1 + 2 + 2 + 5 D10 

6 = 1 + 1 + 1 + 3 2N test 

12 = 1 + 3 + 4 + 4 3N test 

6 = 1 + 1 + 2 + 2 3N test 

6 = 1 + 1.5 + 1.5 + 2 Sizes of CC must be integers 

4 = 1 + 1 + 1 + 1 C4, V4 

 

Exercise 3: 

1 = 
1

3
  + 

1

3
  + 

1

4
  + 

1

13
  + 

1

156
  

1 = 
1

3
  + 

1

3
  + 

1

4
  + 

1

14
  + 

1

84
  

1 = 
1

3
  + 

1

3
  + 

1

4
  + 

1

15
  + 

1

60
  

1 = 
1

3
  + 

1

3
  + 

1

4
  + 

1

16
  + 

1

48
  

1 = 
1

3
  + 

1

3
  + 

1

4
  + 

1

18
  + 

1

36
  

1 = 
1

3
  + 

1

3
  + 

1

4
  + 

1

20
  + 

1

30
  

1 = 
1

3
  + 

1

3
  + 

1

4
  + 

1

21
  + 

1

28
  

1 = 
1

3
  + 

1

3
  + 

1

4
  + 

1

24
  + 

1

24
  

1 = 
1

3
  + 

1

3
  + 

1

5
  + 

1

8
  + 

1

120
  

1 = 
1

3
  + 

1

3
  + 

1

5
  + 

1

9
  + 

1

45
  

1 = 
1

3
  + 

1

3
  + 

1

5
  + 

1

10
  + 

1

30
  

1 = 
1

3
  + 

1

3
  + 

1

5
  + 

1

12
  + 

1

20
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1 = 
1

3
  + 

1

3
  + 

1

5
  + 

1

15
  + 

1

15
  

1 = 
1

3
  + 

1

3
  + 

1

6
  + 

1

6
  + 

1

6
  

1 = 
1

3
  + 

1

4
  + 

1

4
  + 

1

7
  + 

1

42
  

1 = 
1

3
  + 

1

4
  + 

1

4
  + 

1

8
  + 

1

24
  

1 = 
1

3
  + 

1

4
  + 

1

4
  + 

1

9
  + 

1

18
  

1 = 
1

3
  + 

1

4
  + 

1

4
  + 

1

10
  + 

1

15
  

1 = 
1

3
  + 

1

4
  + 

1

4
  + 

1

12
  + 

1

12
  

1 = 
1

3
  + 

1

5
  + 

1

5
  + 

1

5
  + 

1

15
  

1 = 
1

3
  + 

1

5
  + 

1

5
  + 

1

6
  + 

1

10
  

1 = 
1

3
  + 

1

6
  + 

1

6
  + 

1

6
  + 

1

6
  

1 = 
1

4
  + 

1

4
  + 

1

4
  + 

1

5
  + 

1

20
  

1 = 
1

4
  + 

1

4
  + 

1

4
  + 

1

6
  + 

1

12
  

1 = 
1

4
  + 

1

4
  + 

1

4
  + 

1

8
  + 

1

8
  

1 = 
1

4
  + 

1

4
  + 

1

5
  + 

1

5
  + 

1

10
  

1 = 
1

5
  + 

1

5
  + 

1

5
  + 

1

5
  + 

1

5
  

You might like to work out the corresponding class equations and 

eliminate those that are not possible and identify any you recognise. 

 


