11. CLASS EQUATIONS

§11.1. Babylonian Equations

If we want to investigate all the character tables of
a given size we need to find all groups with a given
number of conjugacy classes. We shall see that there are
only finitely many possible orders for a group with k
conjugacy classes, and hence only finitely many k x k
character tables for any k. For small values of k it is
possible to catalogue them.

The class equation of a finite group is:
|G| =nNi+nNo+ ... Nk
where the n;’s are the sizes of the conjugacy classes and
N<nN<..<Nk
When there are ¢ classes of a given size n, we often write
nxc instead of n + n+ ... + n (c times)

Example 1:
The class equation for S4is 24 =1 + 3 + 6%2 + 8 and for

Dig it iS 16 = 1%2 + 2x3 + 4%2.

Often the class equation completely characterises
the group, but there are some groups that share the same
class equation.
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Example 2:

Both Dg=(A,B|A*=B%=1, BA=A"'B)and

Qs = (A, B|A*=1, B>= A?, BA = A'B) have the same
class equation: 8 = 12 + 2%3.

Now each n; is the index of the corresponding centraliser
in G and so divides |G|. If we divide a class equation by
|G| we get an equation of the form:

where each m; is a positive integer.

A Babylonian equation is an equation of the form:
1 1
l=—"+...+—
m; Mk
where each mj € Z*and m; <m, <.. <my. The length of

such an equation is k.

Example 3:

The class equation for S;is24=1+ 3+ 6 + 6 + 8 which
: : : 1,1.1,1,1

gives the Babylonian equation: 1 =3+ 7+ 7 +35+57.

Theorem 1: There are only finitely many Babylonian
equations of a given length.
Proof: For a Babylonian equation of length k:
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suppose we have proved that there are finitely many
choices for my, my, ... m;.

1 1 1
Leti<kandletM = 1—m Tt T me
Then m.+1 mk = M and we have finitely many

choices for M.

1 —i
> ...>—wehave M < .
Mij+1 M Mi+1

<M < "7, giving only finitely many

Since

So 1-M

choices for mj.;.

Corollary: There are only finitely many class equations
of a given length and hence only finitely many character
tables of a given size.

Example 3: Babylonian equations of length < 4:

Length 1 Length 2
1=1 _1 .1
2 2
Length 3
1 1 1 1 1 1 1 1 1
1=§+§+6 1:5 +Z +Z 1=§ +§+§
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+ + + + + + +
—A|O[H|OD|AH|O | H|O [ H|O|H|O ||
+ + + + + + +
A A || T || T || O || || T
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A | A ||| AT || || ||
+ + + + + + +
AN AN | AN | AN | AN ||| |0
I I I I 11 I 11
- — - - — - —

Example 4: Class equations of length < 3

wn
Q a
2 <5}
m 1 c
N ™ O o
Ol—40O | c @)
™ N —
c + + +
O] — N — -
W+ [+ |+ |+
Bl | — —
Sin|n I I I
Oldln | <t ™
—A©O| —IT |dm
c
S + + +
= —AIN| A | (™M
S + | + + | +
hWJl AN AN | AN A
| I I I I I
N — — —
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§11.2. Some Elementary Tests for

Potential Class Equations

Much of the material in this chapter arose in the
1980s from my teaching a course on group theory.

It’s a routine exercise to generate all Babylonian
equations of a given length and to obtain a list of possible
class equations. The problem is to exclude those that do
not arise. A subsequent problem is to identify the groups
that give rise to the potential class equations.

We’ll focus on the first problem by investigating
properties that class equations must satisfy. Each such
property will give rise to a test. Then when we have a
potential class equation we put it through the battery of
tests. Only if it survives do we go in search for possible
groups. If, after a reasonable amount of effort, we can find
no such group we might then look for another reason to
exclude that class equation. The set of tests we shall
develop will catch the vast majority of false class
equations — quite probably no such set of tests will ever
catch them all, for as the number of conjugacy classes
increases there appear to be more and more subtle reasons
that exclude a given class equation.

Theorem 2 (Z Test): Suppose |G| =N and |Z(G)| = m.
If the class equation for G is
N =1xm+ Nps1 + N2 + ... + Ny

where each np+1 > 1 then m must properly divide N/n; for
each i.
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Proof: Suppose g ¢ Z(G).

Then |Cs(g)| = N/n; for some i > m.

Since g € Cs(g), Z(G) must be a proper

subgroup of Cs(g) and so m properly divides N/n;.

Example 5:84 =1+ 1+ 12+ 21 + 21 + 28 is not a class
equation.

Theorem 3 (pq Test): Suppose

N=1+n,+ns3+...+n
Is the class equations for a group G and, for some i>1,
N/n; = p2g®, where p, g are distinct
primesand a, b > 1.
Then the number of j for which pq divides N/n; is at least
4,
Proof: We need to find four conjugacy classes where the
orders of the centralisers are all divisible by pqg.
Suppose |Cs(g)| = p?g° where g # 1 and suppose that g
has order d.
Then either p or g divides d.
Suppose, without loss of generality, p divides d, in which
case some power of g has order p.
By Cauchy’s theorem Cg(g) contains an element of order
g, which commutes with that power of order p and so G
has an element of order pqg and so elements of order 1, p,
q and pg whose centralisers have orders divisible by pg.
As the orders are different they must belong to distinct
conjugacy classes.
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Example 6: 120=1+5+ 20+ 24 + 30 + 40 is not a class
equation because if it was the respective centralisers
would have orders 120, 24, 6, 5, 4 and 3.

Theorem 4 (pN Test): Suppose p is prime and
PN=1+ny+n3+ ...+ N+ N*t

Is the class equation for a group Gwhere N> 1,t>1and

Nkt < N.

Then: (i)t|p-1and

(i) N =22 (mod p).

Proof: Let I be a class of size N and let g € I". Then
ICe(9)| = p and so Ce(g) = (9).

If g° # 1 then Cs(g®) = (g) and so g° lies in a conjugacy
class of size N.

Let Q2 be any conjugacy class of size N and let {g) act on
it by conjugation.

The orbits have sizes 1 or p. But orbits of size 1
correspond to non-trivial powers of g, and there are p — 1
of these altogether, so the number of orbits of size 1 in T’
is at most p —1.

Now if N = np + r where 0 <r < p there must be exactly r
orbits of size 1 in Q.

So there are exactly r powers of g in each of the t
conjugacy classes of size N and hence

p—1=rt HenceNzrz%l(modp).

209



Example 7: 216 =1+ 8 + 27 + 54 + 54 + 72 is not a class
equation.
Herep=3,t=1and N =72 =0(mod 3).

811.3. The 2N Test

The largest possible size of a conjugacy class, for a
non-trivial group of order M, is M/2. Of course there can
only be one of these and its elements must have order 2.
In fact the class equation of such a group is completely
determined by this property.

Theorem 5 (2N test): Let |G| = 2N and let T" be a
conjugacy class of size N.
Then N is odd and the class equation for G is

IN=1+2+2+ . F2+N=1+2—n"-

Proof:

(1) The elements of I" have order 2 and commute only
with 1 and themselves:

This is because the centralisers of these elements have
order 2N/N.

(2) H=G -T"is a normal subgroup of G:

H clearly contains 1 and is closed under inverses. Let X,
y be distinct elements of T".

If Xy e T then (xy)?> =x?%?=1,s0xy =yxand hence y
Cs(X), a contradiction. Hence H is a subgroup of G and,
being a subgroup of index 2, it is a normal subgroup.
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(3) H is abelian:

LetheHandk eI'. Ifhk € Hthenk € H.

Hence hk e I and so (hk)? = 1.

Thus k*hk = h™ for all h € H and so h — h™ is an
automorphism of H.

If hl, hz e H then (hlhz)_l = hl_lhz_l = (hzhl)_l and so hlhz
= h2h1.

(4) N = |H| is odd.

If |H| is even then H would contain an element h of order
2. Since h = h™? it follows that h commutes with k, a
contradiction.

(5) The class equation for G is
2N=1+2+2+...+2+N.
Since k*hk = h™* for all k € K and all non-trivial h € H,

the conjugacy classes, apart from {1} and I', are all of the
form {h, h1}.

(6) N is odd.

Example 8: 18 =1+ 2 + 6 + 9 is not a class equation.
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§11.4. The 3N Test
Lemma: Ifz=a + beowhere a, b € Z then
lz|* € Z.
Proof: Multiplying z by its conjugate we get
z]> = (a + bo)(a + bw?)
=a%+ b+ abo + abw?
=a’+b’—ab e Z

Theorem 6 (3N Test): Suppose |G| = 3N and G has
precisely 2 classes of size N.
Then |G’| = N and the class equation for G is
3N =1+ 3t; + 3t +... + 3t + N*2 where
N=1+1t*3+t*x3+ ...+ t*3

is the class equation for G'.

Proof: The elements of I" have order 3 and commute only

with their powers.

Suppose I is a class of size N.

If ' =T then there exists g € I" and x € G such that
x1gx =g

Then x2 € Cg(Q).

But |Cs(g)| =3 so x € Cs(Q).

Hence g? = 1, a contradiction.

Hence the two conjugacy classes of size N are I and "%,

By column orthogonality there must be a non-real entry

in the I" column of the character table for G and, since the

eigenvalues of the corresponding matrix must be cube
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roots of 1, this entry must have the form a + bo where a,
b are integers and b = 0.
The character table for G contains the sub-table:

class 1 r r
size 1 N N
| 1 1 1
X2 n a+bo | a+bw?
A3 n a+bon? | a+bo
order 1 3 3

where a, b € Z with b # 0.

By the lemma, |a + bo|? = |a + bw?|? are positive integers

and since the sum of squares of the entries in each of the

last two columns is 3N/N = 3, we must have
|a+boff=|a+bw?=1

and all other entries in these columns must be zero.

So, by orthogonality with the first column,
0=1+n(a+bo)+n(a+bw?
=1+ n(2a-h).
Hence n = 1.
Thus G has at least 3 linear characters.

But if x is any linear character then ¥ (I') = 0 and so

G has exactly 3 linear characters and so |G'| = N.
ClearlyG'=G-T -T1
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The elements of " + Tt have centralisers of order 3 so
can’t commute with any non-trivial element of G'.

Henceif 1 g € G, Cs(g) = Cs(Q).
Thus if g € G’ has t > 1 conjugates in G’ then it has 3t
conjugates in G.

Example 8: If G has class equation
48=1+3+12+16+16
then G’ has class equation
16=1+1+1+1+4+4+4,
which fails the Z Test.
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EXERCISES FOR CHAPTER 11

Exercise 1: For each of the following statements
determine whether it is true or false.
(1) There is a group with class equation:
72=1+2+3+3+6+8+9+16+24.
(2) There is a group with class equation:
32=1+1+1+1+1+1+1+1+8+8+8.
(3) There is a group with class equation:
32=1+1+2+2+2+2+2+2+2+16.
(4) There is a group with class equation:
120=1+1+15+15+20+ 20+ 24 + 24.
(5) There is a group with class equation:
70=1+2+2+7+7+7+7+35
(6) There is a group with class equation:
60=1+2+5+12+20 + 20.
(7) There is a group with class equation:
50=1+2+2+2+2+2+2+2+2+2+2+2+2+25
(8) There is a group with class equation:
48=1+3+4+8+ 16 + 16.

Exercise 2: For the Babylonian equations of length 4
given above, write down the corresponding class
equations. Eliminate as many as possible and identify
possible groups for as many of the remaining ones that
you can.

Exercise 3: Find all the Babylonian equations of length 5
where each term is less than Y.
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SOLUTIONS FOR CHAPTER 11

Exercise 1:

(1) FALSE: 16 does not divide 72.

(2) FALSE: For such a group G, |Z(G)| = 8.

The centralisers of the other groups have order 4, but they
must contain the centre, a contradiction.

(3) TRUE: It is Ds,.

(4) TRUE: For such a group G, |Z(G)| = 2.

Let Z(G) = (A). Suppose that G = H x C,. If so, the class
equation for H would be 60 = 1 + 15 + 20 + 24, which we
recognise as the class equation of As. So G = As x C; has
this class equation.

(5) FALSE: By the 2N test.

(6) FALSE: By the 3N test.

(7) TRUE: Such a group is Dsg

(8) FALSE: By the 3N test.

Exercise 2:

CLASS EQUATION COMMENTS
42=1+6+14+21 | 2N test

24=1+3+8+12 2N test
15=1+15+5+7.5 | Sizes of CC must be integers
18=1+2+6+9 2N test

12=1+1+4+6 2N test

20=1+4+5+10 2N test

12=1+2+3+6 2N test

8=1+1+2+4 2N test

216



10=1+2+2+5 Do

6=1+1+1+3 2N test
12=1+3+4+4 3N test
6=1+1+2+2 3N test

6=1+15+15+2

Sizes of CC must be integers

4=1+1+1+1 C4, V4
Exercise 3:

1 1 1 1 1
1=3+3+4+13 *156
1 1 1 1 1
1=3+3+4+ 14 %54
1 1 1 1 1
1=3+3+3%15 Y50
1 1 1 1 1
1=3+3+3 %16 *18
1 1 1 1 1
1=3+3+3*18 %%
1 1 1 1 1
1=3+3+3 %20 %30
11 1 1 1
1=3+3+4+%21 %28
11 1 1 1
1=3+3+4+%24 %2
1 1 1 1 1
1=3+3+5+5*10
1 1 1 1 1
1=3+3+5+9 %5
1 1 1 1 1
1=3+3+5+10 %30
1 1 1 1 1
1=3+3+5+13 %0
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You might like to work out the corresponding class equations and
eliminate those that are not possible and identify any you recognise.
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